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Abstract. Kolmogorov, Arnol’d and Moser proved that invariant toroids of N dimensions 
occupy a finite volume of the 2N-dimensional phase space of nearly integrable bounded 
systems of N degrees of freedom. Variational principles are stated for such invariant toroids. 

1. Introduction 

It is well known that variational principles lie at the heart of mechanics (Lanczos 1966). 
It is less well known that invariant toroids are essential to the modern general theory of 
dynamical systems of N degrees of freedom. In this paper variational principles are 
obtained for invariant toroids. 

If a conservative system of N degrees of freedom is integrable, the motion of a phase 
point in the 2N-dimensional phase space is confined to an ‘invariant toroid’ of N 
dimensions; such invariant toroids occupy almost the whole phase space of bounded 
integrable motions. If the system is sufficiently close to being integrable, Kolmogorov 
(1954, 1957), Arnol’d (1963a, b), and Moser (1962) (to be referred to as KAM), have 
shown that invariant toroids occupy a finite 2N-dimensional volume (positive measure) 
of the phase space, provided certain conditions of analyticity or differentiability are 
satisfied. Even if the system is far from being integrable, numerical experiments (for 
example, Henon and Heiles 1964, Contopoulos 1963, 1971) suggest that much of phase 
space may be occupied by invariant toroids. 

Both analytic and numerical work on invariant toroids was stimulated by problems 
of celestial mechanics, including the stability of the solar system and the velocity distribu- 
tion of stars in the galaxy. In addition to these fields, the theory has applications to  the 
particle dynamics of plasmas (Whiteman and McNamara 1968), to the stability ofparticles 
in accelerators (Symon and Sessler 1956), to magnetic surfaces (Arnol’d 1963b), to the 
theory of certain molecular processes (Thiele and Wilson 1961), to  the foundations of 
classical statistical mechanics (Arnol’d and Avez 1968, Wightman 1971, Ford 1972), 
and to the semi-classical quantization of bound systems (Einstein 1917, Keller 1958, 
Percival 1973). The earlier workers were not aware of the KAM theorem. 

t Of the University of Colorado and the National Bureau of Standards. Visiting fellow 1971-72. 
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For details of the analytic theory of invariant toroids the reader is referred to the 
quoted papers of Kolmogorov, Arnol’d and Moser and to the books of Arnol’d and 
Avez (1968), Abraham (1967) and Siege1 and Moser (1971). 

In this paper we obtain variational principles for invariant toroids and discuss only 
briefly their application. Abraham (1967,g 19) points out that it is quite difficult to be 
rigorous in the calculus of variations, and rigour is not attempted here. 

2. Invariant toroids of integrable systems 

Consider a conservative dynamical system with N-dimensional canonical vector 
coordinate and momentum 

4 = (41, 4 2  3 . . . 5 qN)r P = ( P l , P 2 , . . . 9 P N ) ?  (2.1) 

whose motion satisfies Hamilton’s equations 

Let W be a bounded 2N-dimensional region in the phase space of phase points 

x = (9 ,P)  (2.3) 
within which H(q,  p )  is everywhere analytic in (q ,  p ) .  Consider only those classical phase 
trajectories 

X ( t )  = (4(t) ,  Po)) (2.4) 
which satisfy Hamilton’s equations (2.2) and which are confined to W for all times t .  
Suppose 9 consists entirely of such trajectories. 

By the conservation of energy each trajectory is further confined to  a (2N-1)- 
dimensional region or ‘energy shell’ defined by the equation 

H(q5 P )  = E (2.5) 

for some fixed value of E .  
A system is ‘integrable’ if there is a time-independent canonical transformation to  a 

new N-dimensional coordinate q’ and momentum p‘ for which the hamiltonian has the 
q‘-independent form 

H = H(p’) .  (2.6) 
A particular case is that of ‘completely separable’ systems for which it can be further 

simplified to  the form 
N 

W P ’ )  = 1 H k ( P 2 .  (2.7) 
k =  1 

In each case a classical trajectory is confined to an N-dimensional region defined 
by the initial values of the momenta p ; .  According to  the usual theory of action-angle 
variables for the bounded motion of integrable systems (Landau and Lifshitz 1969,§ 50, 
Goldstein 1953, $9.5, Born 1960, chap 2) a further transformation can be made to  
canonical coordinate and momentum 
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where 8 is in an N-dimensional angle variable; that is, 8 k  lies in the range 

- n  < 0 k  < 71 (2.9) 
and a phase point X ( 8 , I )  is periodic of period 271 in each of the 8 k  variables?. The 
hamiltonian is independent of the 8 k ,  

H = H ( I ) ,  (2.10) 

so that the action vector I is constant. For a given I = I o  a classical trajectory which 
passes through the phase point 8 = 8’ at time t = 0 is given by 

X ( I O ,  e), (2.11~) 

8 k  = o k t  + e:, ( k  = 1,2, .  . . , N) (2.1 1 b) 

where o k  is an angular frequency which generally depends on all the I k v ,  but for com- 
pletely separable systems depends on alone. 

For each fixed value Io of the N-dimensional action I ,  the dependence of the phase 
point X ( 0 ,  Io) on the N-dimensional angle variable 8 parametrically defines an N- 
dimensional region in the phase space, where 8 is the N-dimensional parameter. Because 
the dependence of X on 8 is periodic in each of the 0 k ,  the region is a toroid. 

For a system of two degrees of freedom, the toroid is a two-dimensional surface 
lying in a three-dimensional energy shell of a four-dimensional phase space. For any N, 
a phase point which lies in the toroid at any time and which moves according to the 
classical equations of motion, remains in it for all time. The toroid is therefore invariant 
under the classical motion of its phase points. 

Since the canonical transformation to  (0, I )  is possible for all points X of trajectories 
X ( t )  in B, every such trajectory is confined to an invariant toroid, and cannot wander 
freely within the energy shell. The 2N-dimensional region 93 of phase space consists 
almost entirely of invariant toroids, the exceptions being regions of lower dimension. 

3. Invariant toroids of general systems 

Suppose our system of N degrees of freedom is not necessarily integrable. An N -  
dimensional toroid X in the 2N-dimensional phase space can still be represented 
parametrically by a phase point which is a sufficiently well behaved function of an 
N-dimensional angle variable 8 : 

x = X,(@ = [4r(8), P r ( m  (3.1) 
where 4, p are the original coordinate and momentum of the phase point X .  The toroid 
is invariant if it contains all of the classical trajectory which passes through any one of its 
phase points. We shall refer to it as an invariant toroid only if, in addition, the motion 
along each classical trajectory of the surface satisfies equation (2.11b) for some set of N 
angular frequencies ok. 

This parametric representation is suggested by the work of Siege1 and Moser (1971, 
0 36). 

According to the theorem of Kolmogorov, Arnol’d and Moser, invariant toroids 
occupy a region of finite volume (positive measure) of the phase space of a system which 
is sufficiently close to integrability. We shall name this a ‘regular’ region. Numerical 

t Where notation differs from the quoted texts: Jk = 2x1,, wk = Ok/2x. 
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experiment suggests that regular regions are still significant even when the system is 
far from being integrable. The residual (irregular) region also appears to be of finite 
volume, in many cases consisting of unstable trajectories which do not seem to be in 
invariant surfaces. The geometrical structure of both regular and irregular regions is 
very complicated. 

The condition for a toroid represented by (3.1) to be invariant can be expressed 
independently of the time by using equation (2.1 lb) to obtain the operator relation 

Hamilton's equations then take the form of first-order differential equations in Ok : 

where the vector operators 8/84, a/ap are defined as 

a a a  - -  

a a a  

(3.3a) 

(3.3b) 

(3.4) 

If the angle Hamilton equations (3.3) and equation (2.11b) are satisfied for any N 
angular frequencies (a1, 02,. . . , wN) ,  then the toroid is invariant. 

The condition (3.3) relates phase points of the toroid along the trajectories only. 
There is no condition across these trajectories, except that q ( Q p ( 8 )  should be a well 
behaved, in particular a continuous, function of the N-dimensional angle variable 8. 

Invariant toroids are related to solutions of the time-independent Hamilton-Jacobi 
(HJ) equation 

(3.5) 

for an action function (characteristic function) S,(q). Given a solution of equation ( 3 3 ,  
the momentum 

H(q,  dS,/aq) - E = 0 

P = as,/aq (3 .6)  

may be considered as a function of q, thus defining an N-dimensional region in the 
2N-dimensional phase space of points X = (q, p ) .  From the Hamilton-Jacobi theory 
this region is made up of parts of classical trajectories, but it is not necessarily an invariant 
toroid, as it may not be closed. 

Unfortunately the definition of an invariant toroid from the HJ equation requires a 
detailed study of multi-valued action functions, as may be seen by considering the simple 
one-dimensional oscillator. The complicated analytic properties of these multi-valued 
functions are discussed in general terms by Einstein (1917). 

Because of these complications the parametric representation of invariant toroids 
is chosen as the basis of the following theory, despite the apparent advantages of defining 
them through a single function S,(q) of the vector coordinate q. 



798 I C Percival 

Conversely, however, line integrals of the form 

(3.7) 

on an invariant toroid provide a special multivalued solution of the HJ equation (3.5), 
which is the classical analogue of the bound state solution of the Schrddinger equation 
of quantum mechanics. The dot represents a scalar product. 

4. Variational principle in hamiltonian form 

Denote an integral over the entire space of the angle variables by 

Q d ( w v )  = de, . . . j:n de,F(e,, . . . , e,) 

and a normalized integral by 

The mean value of the kth action integral for an N-dimensional toroid C (not 
necessarily invariant) is defined as 

I k ( c )  = $ d(e)pZ(e). aqdo) /aek ,  

where the dot represents a scalar product. 
Introduce the mean energy on the toroid, which is 

(4.3) 

(4.4) 

where H(q,  p )  is the hamiltonian function and suffices have been dropped. By analogy 
with the stationary principle for bound state solutions of the Schrodinger wave equation 
(Landau and Lifshitz 1958,o 18) we require that this energy be stationary with respect 
to  small smooth periodic variations in q(O),p(O) subject to  the action integrals (4.3) 
remaining constant. This suggests a stationary principle for the classical functional 

(4.5) 

where the mk are Lagrange multipliers. According to  this principle and ignoring terms 
of second order in the variations : 

0 = A@ (4 .6~)  
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Integration by parts is used in the third equality ; the periodicity of q and p in each of the 
0, ensures that the boundary terms are zero. 

Since Aq(0) and Ap(@ are arbitrary, their coefficients must be zero, giving 

( 4 . 7 ~ )  

(4.7b) 

These are the angle Hamilton equations ( 3 . 3 )  for an invariant toroid. When the wk are 
interpreted as angular frequencies, the linear combination of partial derivatives with 
respect to  the 8, becomes a total derivative with respect to the time as in equation (3.2). 

The usual relations (2.11b) between the angle variables and the time for a particular 
orbit follow and equations (4.7) become Hamilton's equations. 

The explicit form of the trajectory in phase space is given as a function of time by 
[qr(O(t)), pz(O(t))] with e(t) given by (2.1 l b )  with fixed phase shifts 0;. 

Thus a toroid with parametric representation (3.1) and satisfying the variational 
principle (4.6) is an invariant toroid. Conversely, because an invariant toroid Z with 
parametric representation ( 3 . 1 )  satisfies the surface Hamilton equations (4.7), the integral 
(4.5) may be shown to be stationary for variations about C. 

We now have a variational principle for invariant toroids in hamiltonian form. 
When the hamiltonian function has the form 

equation ( 4 . 7 ~ )  requires the momentum coordinate p l  to be 

so that from (4.7b) the angle equations may be written in newtonian form in terms of the 
coordinates ql alone : 

(4.10) 

For this hamiltonian the action integrals (4.3) can also be written in terms of the 
coordinates : 

where Gkj  is a generalized moment of inertia tensor, given by 

1 aq a # a e k ' a e j  Gkj = d(0)- -(mq) 

and mq is an N-vector with elements m,q,. 

5. Variational principle in lagrangian form 

(4.12) 

Let L(q, q)  be the lagrangian. Suppose from the start that " k  is the angular frequency 
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corresponding to the angle variable ek, and that the total time derivative is given by 
equation (3.2). Then the lagrangian is the following function of q(@, aq/aek and mk : 

Let I ,  be fixed and initially undefined constants, of the dimensions of action, and 
consider the functional 

For the variational principle, suppose that Y is stationary with respect to small smooth 
periodic variations in q(e) and also with respect to small variations in the angular 
frequencies w k .  According to this principle and neglecting terms of second order in the 
variations : 

Equate the coefficients of the variations to zero and obtain 

a i"") aq = -  z (5.4a) 

(5.4b) 

These are the angle form of Lagrange's equations and the equations for the action 
integrals ; in this case the latter are obtained from the variational principle. 

The functions 

de) ,  ( 5 . 5 )  

define an invariant toroid when they satisfy the variational principle or the equations 
(5.4). 

Since the number of unknowns q(e), wk for the lagrangian form is less than for the 
hamiltonian form, the lagrangian form is used in the following. 

6. Fourier expansion 

An approximation to an invariant toroid is obtained by restricting it to a specific 
functional form and then applying a variational principle which preserves that form. A 
particularly simple form is the finite Fourier sum. For simplicity consider the case of 
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motion of a particle of mass m in two dimensions with position r = (x,y), velocity 
U = ( v x ,  u y )  and lagrangian 

L = +mu2- V(r). (6.1) 

The position and velocity can be expanded in Fourier series, which may be truncated 
for an approximation : 

The lagrangian functional is 

S I S 2  

- f d ( @ V (  ~ 2 r s l s 2 e x P ~ i ~ s l e l + s 2 e 2 ~ l  - ~ 1 1 1 - ~ 2 1 2 .  (6.4) 1 
The coefficients of the derivatives with respect to x-sI-s2 and y-,,-,, are all zero, so 
that 

m(s1w1 +s2w2)2rsls2 = -Fsls23 

where FsIs2 is the Fourier component of the force : 

F(r) = -VV(r) (6.6) 

The Fourier equations (6.5) are truncated at the same point as the original expression 
(6.2). They are the same equations as are obtained by the corresponding truncation 
of the discrete Fourier transformation of the newtonian form (4.10). The variational 
principle shows that they are the best that can be obtained for an estimate of Y from a 
truncated Fourier expansion. 

The variations in w1 and 0, provide the matrix equation for the action integrals 

with 

SlS2 

Similar truncated Fourier expansions of the angle hamiltonian and Lagrange 
equations can be obtained from the corresponding variational principles. Various 
iterative procedures for the solution of these equations result in a variety of approxi- 
mate methods for finding invariant surfaces. One can rederive in this way the classical 
method of Lindstedt (see Poincare 1893) and the method used by Arnol’d (1963a) in 
his proof of the existence of invariant surfaces. 

By substitution of particular restricted approximate analytic forms for the qZ(e) 
(and PE(@) a wide variety of other approximations to  invariant surfaces can be obtained. 
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7. Conclusion 

The variational principles proposed for invariant surfaces have the properties of other 
dynamical variational principles. Their statement is very simple, they are independent 
ofthe canonical variables, they can be made the basis of a whole variety ofapproximations 
and they suggest interesting relations between classical and quantum mechanics but 
they are difficult to treat rigorously. 
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